

DLR Contribution to the first High Lift Prediction Workshop

S. Crippa, S. Melber-Wilkending, R. Rudnik

DLR, Institute of Aerodynamics and Flow Technology, D-38108, Braunschweig, Germany

- Motivation
- DLR Grid Generation Contributions
 - SOLAR hybrid unstructured grid family
 - CENTAUR hybrid unstructured grid family (incomplete)
- CFD solutions for the Trap Wing configuration, case 1
 - Grid convergence study SOLAR/TAU and CENTAUR/TAU
 - Turbulence model variation CENTAUR/TAU
- CFD solutions for the Trap Wing configuration, case 2 SOLAR/TAU
- CFD solutions for the Trap Wing configuration, case 3 SOLAR/TAU
- Conclusion and outlook

DLR Motivation for Workshop Participation

- > Extend validation and verification of the DLR TAU-code's predictive capabilities for a 'new' 3D high lift test case
- ➤ Benchmark hybrid unstructured grid generation approaches, namely CENTAUR/TAU vs. SOLAR/TAU for a 3D high lift configuration
 - consideration of gridding guidelines for high lift cases
 - check prism-dominant vs. hex-dominant near wall grid topologies
 - grid refinement study for 3D configuration
- > Check/improve best practice approaches for complex high lift configurations
 - turbulence model performance
 - convergence and start-up procedures
 - efficiency aspects, simplifications (e.g. b.t.e. resolution)

SOLAR Grid Family

- Grid family approach with 3 levels for configuration 1
- Medium grids for configuration 8 (case 2) and configuration 1 with brackets (case 3)
- Grid level characteristics (volume grid scaling factor = 3)

Grid Level	Pts.	Tet Elem.	Surf. Pts.	Tot. Elem.	Wall-normal Layers
С	12,307,000	5,294,000	328,000	16,785,000	35
М	36,968,000	13,666,000	682,000	48,500,000	51
F	110,746,000	36,286,000	1,419,000	141,308,000	74

- Grid generation and adaptation approach
 - > surface resolution quad-based (about 0,3 % of total surface elements triangle based)
 - > constant first cell height according to overall y⁺ -adaptation
 - hex-layer thickness driven by variable expansion ratio
 - > semi-automated source distribution

• Solar coarse grid - configuration 1

cut at $\eta = 0.50$

cut at wing tip

• Surface grid – expansion ratio distribution

CENTAUR Grid Family

- Grid family approach with 3 levels (initially 4) for configuration 1
- Grid level characteristics (no grid family, but grid resolution variation)

Grid Level	Pts.	Tet Elem.	Surf. Pts	Tot. Elem.	Wall-normal Layers
хс	12,923,391	18,104,000	307,000	37,419,000	34
С	16,374,761	17,032,000	392,000	43,549,000	36
М	31,498,984	25,052,000	756,000	78,726,000	38

- Grid generation and adaptation approach
 - > surface resolution triangle-based
 - > y⁺ -adaptation sectionwise and spanwise
 - > spanwise adaptation of streamwise surface resolution at I.e. and t.e.
 - > additional refinement by local cylinder sources along trim curves at root and tip
 - > semi-automated source distribution

• Surface grid - configuration - rear view

• Surface grid – wing t.e., flap gap - upper side view

• grid cut for coarse grids at $\eta = 50$

Gridding guidelines compliance/deviations:

> Solar:

- 1st cell height lower than recommended value (y⁺ > 1)
- initial no. of layers with constant height scaled to grid levels to improve similarity
- target no. of pts at grid levels achieved with accuracy of about 1.5 percent
- nearfield value of growth rate of 1.25 only partially met

> CENTAUR:

- initial no. of layers with constant height could not be met (inherent to approach)
- No of wall-normal layers not consistenly varied
- target no. of pts at grid levels not consistently achieved no grid family, more sequence of grid

CASE 1

SOLAR/TAU, CENTAUR/TAU

Baseline CFD Results - Medium grid Grid Refinement

TAU Computations – Parameter-Settings

• Code Version: DLR TAU code 2010.1.0

Spatial Discretization:

➤ Main equations: Jameson central, 2nd order;

Blend scalar (80%) – matrix (20%) dissipation

➤ Turb. Equations: Roe upwind, 2nd order

• Turbulence Models: - Spalart-Allmaras, original formul. (SAO)

- Menter k-ω SST (SST)

- SSG/LRR-ω diff. Re-stress model (RSM)

Temp. Integration: - LU-SGS Backward Euler

- Multigrid, 3V cycle

• TAU-SAO, SOLAR grid-family; $\eta = 0.50$

pressure distribution at

Institute of Aerodynamics and Flow Technology

• TAU-SAO, SOLAR vs. CENTAUR grid-families; η = 0.98 pressure distribution at α = 13°

• TAU-SAO, SOLAR vs. CENTAUR grid-families; η = 0.98 pressure distribution at α = 28°

• TAU-SAO, SOLAR vs. CENTAUR grid-families lift (left) and pitching moment at

• TAU-SAO, grid-n; α = 13°: turb.-model-var.

pressure distribution at

and 0.98

• TAU-SAO, grid-n; α = 28°: turb.-model-var.

pressure distribution at

and 0.98

• TAU-SAO, grid-family; α = 13, 28°: turb.-model var.

Grid Generation - TAU-Computations - Case 1

• TAU-SAO/SST/RSM, grid-m; α = 13, 28°:

isobars and surface streamlines

• TAU-SAO, grid-m; α = 13, 28°: start-up procedure: scratch

• TAU-SAO, grid-m; α = 13, 28°: start-up procedure stepwise restart ($\Delta \alpha$ = 2°)

CASE 2

SOLAR/TAU, CENTAUR/TAU

Configuration 1 and 8 - Medium Grid

• TAU-SAO, grid-m; polar computations for config. 1

• TAU-SAO, SOLAR grid; polar computations for config. 1 and 8

CASE 3

SOLAR/TAU

Configuration 1 with brackets - Medium Grid

• TAU-SAO, SOLAR grid; bracket influence

flap pressure distribution at

- ➤ Validation and verification of the DLR TAU-code extended for NASA Trap Wing test case for two flap settings and configuration with support brackets
 - in general good agreement obtained w.r.t. forces, moments, cp-distributions
 - effect of flap setting variation and brackets consistently captured
 - wingtip area most critical part of the configuration with significant deviations between CFD and w/t test results
- > Benchmark of hybrid unstructured grid generation package SOLAR
 - generation of grid family (widely) considering gridding guidelines achieved
 - grid convergence not reached at higher AoA's
- > Benchmark of hybrid unstructured grid generation packages CENTAUR/TAU
 - consistent grid family could not be successfully completed on fine grid level
 - high input effort to resolve bte.'s due to patchwise grid generation approach
 - grid resolution variation carried out on three grid levels with mderate impact
- ➤ Moderate influence of grid resolution on forces, moments and cp-distributions; most pronounced at wing tip area and in extend of side-of-body separation

- ➤ Turbulence model variation carried out based on 1-, 2-equation eddy viscosity models and a differential RSM model on CENTAUR medium level grid
 - in general moderate influence on pressure distribution except at wingtip area
 - SST model predicts strongest side-of-body separation
 - RSM model shows strongest trend for tip separation at high AoA'S
 - based on current evidence higher fidelity approaches don't offer superior agreement to experimental evidence, but
 - slat vortex interaction with rear part of the wing and flap currently not properly resolved – seen as a requirement for reliable assessment of model performance (in outer wing area)
- Sensitivity of convergence start-up procedure requires best practice guidelines and investigation of possible means to alleviate it
- > Outlook for DLR activities:
 - detailed study of slat edge vortex and interaction with downstream elements
 - extend validation on Trap wing for field data and transition effects

Thank You